1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
| #include <stdio.h> #include <stdlib.h> #include <string.h> #include <tensorflow/c/c_api.h>
TF_Buffer* read_file(const char* file); //读取pb模型文件,在tensorflow-c的api中没有这部分代码,需要自己写
void free_buffer(void* data, size_t length) { free(data); } //释放内存的函数,在读入pb模型到TF_NewBuffer会用到
void deallocator(void* ptr, size_t len, void* arg) { free((void*)ptr); } //笔者在用的时候使用这个函数会导致错误,将代码完全注释后正常
int main(int argc, char const* argv[]) { // load graph // ================================================================================ TF_Buffer* graph_def = read_file("./exported/graph.pb"); //读取pb模型文件,这个路径就是模型文件的路径 TF_Graph* graph = TF_NewGraph(); //新建Graph TF_Status* status = TF_NewStatus(); //status表示函数操作的返回状态,TF_Message(status)可以输出状态信息 TF_ImportGraphDefOptions* opts = TF_NewImportGraphDefOptions(); TF_GraphImportGraphDef(graph, graph_def, opts, status); TF_DeleteImportGraphDefOptions(opts);//将模型读入graph if (TF_GetCode(status) != TF_OK) { //判断读入graph是否成功,TF_OK表示操作成功 fprintf(stderr, "ERROR: Unable to import graph %s\n", TF_Message(status)); return 1; } fprintf(stdout, "Successfully imported graph\n");
// create session // ================================================================================ TF_SessionOptions* opt = TF_NewSessionOptions(); TF_Session* sess = TF_NewSession(graph, opt, status);//将模型读入session TF_DeleteSessionOptions(opt); //读入session后可以删除graph if (TF_GetCode(status) != TF_OK) { fprintf(stderr, "ERROR: Unable to create session %s\n", TF_Message(status)); return 1; } fprintf(stdout, "Successfully created session\n");
// run init operation,说session初始化,这个在应用中可以不做 // ================================================================================ const TF_Operation* init_op = TF_GraphOperationByName(graph, "init"); //初始化session,笔者在应用中并没有测试该功能 const TF_Operation* const* targets_ptr = &init_op;
TF_SessionRun(sess, /* RunOptions */ NULL, /* Input tensors */ NULL, NULL, 0, /* Output tensors */ NULL, NULL, 0, /* Target operations */ targets_ptr, 1, /* RunMetadata */ NULL, /* Output status */ status); if (TF_GetCode(status) != TF_OK) { fprintf(stderr, "ERROR: Unable to run init_op: %s\n", TF_Message(status)); return 1; }
// run restore,session中的模型进行再次存储,这个在应用中可以不做 // ================================================================================ TF_Operation* checkpoint_op = TF_GraphOperationByName(graph, "save/Const"); TF_Operation* restore_op = TF_GraphOperationByName(graph, "save/restore_all");
char* checkpoint_path_str = "./exported/my_model"; size_t checkpoint_path_str_len = strlen(checkpoint_path_str); size_t encoded_size = TF_StringEncodedSize(checkpoint_path_str_len);
// The format for TF_STRING tensors is: // start_offset: array[uint64] // data: byte[...] size_t total_size = sizeof(int64_t) + encoded_size; char* input_encoded = (char*)malloc(total_size); memset(input_encoded, 0, total_size); TF_StringEncode(checkpoint_path_str, checkpoint_path_str_len, input_encoded + sizeof(int64_t), encoded_size, status); if (TF_GetCode(status) != TF_OK) { fprintf(stderr, "ERROR: something wrong with encoding: %s", TF_Message(status)); return 1; }
TF_Tensor* path_tensor = TF_NewTensor(TF_STRING, NULL, 0, input_encoded, total_size, &deallocator, 0);
TF_Output* run_path = (TF_Output*)malloc(1 * sizeof(TF_Output)); run_path[0].oper = checkpoint_op; run_path[0].index = 0;
TF_Tensor** run_path_tensors = (TF_Tensor**)malloc(1 * sizeof(TF_Tensor*)); run_path_tensors[0] = path_tensor;
TF_SessionRun(sess, /* RunOptions */ NULL, /* Input tensors */ run_path, run_path_tensors, 1, /* Output tensors */ NULL, NULL, 0, /* Target operations */ &restore_op, 1, /* RunMetadata */ NULL, /* Output status */ status); if (TF_GetCode(status) != TF_OK) { fprintf(stderr, "ERROR: Unable to run restore_op: %s\n", TF_Message(status)); return 1; }
// gerenate input // ================================================================================ TF_Operation* input_op = TF_GraphOperationByName(graph, "input"); //明确模型的输入层,每个模型不同 printf("input_op has %i inputs\n", TF_OperationNumOutputs(input_op)); float* raw_input_data = (float*)malloc(2 * sizeof(float));//输入特征有两个维度,且都是浮点数特征 raw_input_data[0] = 1.f; raw_input_data[1] = 1.f; int64_t* raw_input_dims = (int64_t*)malloc(2 * sizeof(int64_t)); //输入数据两个维度 raw_input_dims[0] = 1; raw_input_dims[1] = 2;
/* TF_CAPI_EXPORT extern TF_Tensor* TF_NewTensor( TF_DataType, const int64_t* dims, int num_dims, void* data, size_t len, void (*deallocator)(void* data, size_t len, void* arg), void* deallocator_arg); */ // prepare inputs TF_Tensor* input_tensor = TF_NewTensor(TF_FLOAT, raw_input_dims, 2, raw_input_data, 2 * sizeof(float), &deallocator, NULL);
// void* input_data = TF_TensorData(input_tensor); // printf("input_data[0] = %f\n", ((float*)input_data)[0]); // printf("input_data[1] = %f\n", ((float*)input_data)[1]);
TF_Output* run_inputs = (TF_Output*)malloc(1 * sizeof(TF_Output)); run_inputs[0].oper = input_op; run_inputs[0].index = 0;
TF_Tensor** run_inputs_tensors = (TF_Tensor**)malloc(1 * sizeof(TF_Tensor*)); //将输入数据输入到TF_Tensor run_inputs_tensors[0] = input_tensor;
// prepare outputs // ================================================================================ TF_Operation* output_op = TF_GraphOperationByName(graph, "output");//明确模型的输出层,每个模型不同 // printf("output_op has %i outputs\n", TF_OperationNumOutputs(output_op));
TF_Output* run_outputs = (TF_Output*)malloc(1 * sizeof(TF_Output)); run_outputs[0].oper = output_op; run_outputs[0].index = 0;
TF_Tensor** run_output_tensors = (TF_Tensor**)malloc(1 * sizeof(TF_Tensor*)); //笔者在使用这种方法的时候会导致内存泄露,因此需要注意 float* raw_output_data = (float*)malloc(1 * sizeof(float)); raw_output_data[0] = 1.f; int64_t* raw_output_dims = (int64_t*)malloc(1 * sizeof(int64_t)); raw_output_dims[0] = 1;
TF_Tensor* output_tensor = TF_NewTensor(TF_FLOAT, raw_output_dims, 1, raw_output_data, 1 * sizeof(float), &deallocator, NULL); run_output_tensors[0] = output_tensor;
// run network // ================================================================================ TF_SessionRun(sess, /* RunOptions */ NULL, /* Input tensors */ run_inputs, run_inputs_tensors, 1, /* Output tensors */ run_outputs, run_output_tensors, 1, /* Target operations */ NULL, 0, /* RunMetadata */ NULL, /* Output status */ status); if (TF_GetCode(status) != TF_OK) { fprintf(stderr, "ERROR: Unable to run output_op: %s\n", TF_Message(status)); return 1; }
// printf("output-tensor has %i dims\n", TF_NumDims(run_output_tensors[0]));
void* output_data = TF_TensorData(run_output_tensors[0]); printf("output %f\n", ((float*)output_data)[0]); // you do not want see me creating all the other tensors; Enough lines for // this simple example!
// free up stuff // ================================================================================ // I probably missed something here TF_CloseSession(sess, status); TF_DeleteSession(sess, status);
TF_DeleteStatus(status); TF_DeleteBuffer(graph_def);
TF_DeleteGraph(graph);
free((void*)input_encoded); free((void*)raw_input_data); free((void*)raw_input_dims); free((void*)run_inputs); return 0; }
TF_Buffer* read_file(const char* file) { FILE* f = fopen(file, "rb"); fseek(f, 0, SEEK_END); long fsize = ftell(f); fseek(f, 0, SEEK_SET); // same as rewind(f);
void* data = malloc(fsize); fread(data, fsize, 1, f); fclose(f);
TF_Buffer* buf = TF_NewBuffer(); buf->data = data; buf->length = fsize; buf->data_deallocator = free_buffer; return buf; }
/* TF_CAPI_EXPORT extern void TF_SessionRun( TF_Session* session, // RunOptions const TF_Buffer* run_options, // Input tensors const TF_Output* inputs, TF_Tensor* const* input_values, int ninputs, // Output tensors const TF_Output* outputs, TF_Tensor** output_values, int noutputs, // Target operations const TF_Operation* const* target_opers, int ntargets, // RunMetadata TF_Buffer* run_metadata, // Output status TF_Status*); */
|