| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 
 | #include <stdio.h>#include <stdlib.h>
 #include <string.h>
 #include <tensorflow/c/c_api.h>
 
 TF_Buffer* read_file(const char* file); //读取pb模型文件,在tensorflow-c的api中没有这部分代码,需要自己写
 
 void free_buffer(void* data, size_t length) { free(data); } //释放内存的函数,在读入pb模型到TF_NewBuffer会用到
 
 void deallocator(void* ptr, size_t len, void* arg) { free((void*)ptr); } //笔者在用的时候使用这个函数会导致错误,将代码完全注释后正常
 
 int main(int argc, char const* argv[]) {
 // load graph
 // ================================================================================
 TF_Buffer* graph_def = read_file("./exported/graph.pb"); //读取pb模型文件,这个路径就是模型文件的路径
 TF_Graph* graph = TF_NewGraph(); //新建Graph
 TF_Status* status = TF_NewStatus(); //status表示函数操作的返回状态,TF_Message(status)可以输出状态信息
 TF_ImportGraphDefOptions* opts = TF_NewImportGraphDefOptions();
 TF_GraphImportGraphDef(graph, graph_def, opts, status);
 TF_DeleteImportGraphDefOptions(opts);//将模型读入graph
 if (TF_GetCode(status) != TF_OK) { //判断读入graph是否成功,TF_OK表示操作成功
 fprintf(stderr, "ERROR: Unable to import graph %s\n", TF_Message(status));
 return 1;
 }
 fprintf(stdout, "Successfully imported graph\n");
 
 // create session
 // ================================================================================
 TF_SessionOptions* opt = TF_NewSessionOptions();
 TF_Session* sess = TF_NewSession(graph, opt, status);//将模型读入session
 TF_DeleteSessionOptions(opt); //读入session后可以删除graph
 if (TF_GetCode(status) != TF_OK) {
 fprintf(stderr, "ERROR: Unable to create session %s\n", TF_Message(status));
 return 1;
 }
 fprintf(stdout, "Successfully created session\n");
 
 // run init operation,说session初始化,这个在应用中可以不做
 // ================================================================================
 const TF_Operation* init_op = TF_GraphOperationByName(graph, "init"); //初始化session,笔者在应用中并没有测试该功能
 const TF_Operation* const* targets_ptr = &init_op;
 
 TF_SessionRun(sess,
 /* RunOptions */ NULL,
 /* Input tensors */ NULL, NULL, 0,
 /* Output tensors */ NULL, NULL, 0,
 /* Target operations */ targets_ptr, 1,
 /* RunMetadata */ NULL,
 /* Output status */ status);
 if (TF_GetCode(status) != TF_OK) {
 fprintf(stderr, "ERROR: Unable to run init_op: %s\n", TF_Message(status));
 return 1;
 }
 
 // run restore,session中的模型进行再次存储,这个在应用中可以不做
 // ================================================================================
 TF_Operation* checkpoint_op = TF_GraphOperationByName(graph, "save/Const");
 TF_Operation* restore_op = TF_GraphOperationByName(graph, "save/restore_all");
 
 char* checkpoint_path_str = "./exported/my_model";
 size_t checkpoint_path_str_len = strlen(checkpoint_path_str);
 size_t encoded_size = TF_StringEncodedSize(checkpoint_path_str_len);
 
 // The format for TF_STRING tensors is:
 //   start_offset: array[uint64]
 //   data:         byte[...]
 size_t total_size = sizeof(int64_t) + encoded_size;
 char* input_encoded = (char*)malloc(total_size);
 memset(input_encoded, 0, total_size);
 TF_StringEncode(checkpoint_path_str, checkpoint_path_str_len,
 input_encoded + sizeof(int64_t), encoded_size, status);
 if (TF_GetCode(status) != TF_OK) {
 fprintf(stderr, "ERROR: something wrong with encoding: %s",
 TF_Message(status));
 return 1;
 }
 
 TF_Tensor* path_tensor = TF_NewTensor(TF_STRING, NULL, 0, input_encoded,
 total_size, &deallocator, 0);
 
 TF_Output* run_path = (TF_Output*)malloc(1 * sizeof(TF_Output));
 run_path[0].oper = checkpoint_op;
 run_path[0].index = 0;
 
 TF_Tensor** run_path_tensors = (TF_Tensor**)malloc(1 * sizeof(TF_Tensor*));
 run_path_tensors[0] = path_tensor;
 
 TF_SessionRun(sess,
 /* RunOptions */ NULL,
 /* Input tensors */ run_path, run_path_tensors, 1,
 /* Output tensors */ NULL, NULL, 0,
 /* Target operations */ &restore_op, 1,
 /* RunMetadata */ NULL,
 /* Output status */ status);
 if (TF_GetCode(status) != TF_OK) {
 fprintf(stderr, "ERROR: Unable to run restore_op: %s\n",
 TF_Message(status));
 return 1;
 }
 
 // gerenate input
 // ================================================================================
 TF_Operation* input_op = TF_GraphOperationByName(graph, "input"); //明确模型的输入层,每个模型不同
 printf("input_op has %i inputs\n", TF_OperationNumOutputs(input_op));
 float* raw_input_data = (float*)malloc(2 * sizeof(float));//输入特征有两个维度,且都是浮点数特征
 raw_input_data[0] = 1.f;
 raw_input_data[1] = 1.f;
 int64_t* raw_input_dims = (int64_t*)malloc(2 * sizeof(int64_t)); //输入数据两个维度
 raw_input_dims[0] = 1;
 raw_input_dims[1] = 2;
 
 /*
 TF_CAPI_EXPORT extern TF_Tensor* TF_NewTensor(
 TF_DataType,
 const int64_t* dims, int num_dims,
 void* data, size_t len,
 void (*deallocator)(void* data, size_t len, void* arg),
 void* deallocator_arg);
 */
 // prepare inputs
 TF_Tensor* input_tensor =
 TF_NewTensor(TF_FLOAT, raw_input_dims, 2, raw_input_data,
 2 * sizeof(float), &deallocator, NULL);
 
 // void* input_data = TF_TensorData(input_tensor);
 // printf("input_data[0] = %f\n", ((float*)input_data)[0]);
 // printf("input_data[1] = %f\n", ((float*)input_data)[1]);
 
 TF_Output* run_inputs = (TF_Output*)malloc(1 * sizeof(TF_Output));
 run_inputs[0].oper = input_op;
 run_inputs[0].index = 0;
 
 TF_Tensor** run_inputs_tensors = (TF_Tensor**)malloc(1 * sizeof(TF_Tensor*)); //将输入数据输入到TF_Tensor
 run_inputs_tensors[0] = input_tensor;
 
 // prepare outputs
 // ================================================================================
 TF_Operation* output_op = TF_GraphOperationByName(graph, "output");//明确模型的输出层,每个模型不同
 // printf("output_op has %i outputs\n", TF_OperationNumOutputs(output_op));
 
 TF_Output* run_outputs = (TF_Output*)malloc(1 * sizeof(TF_Output));
 run_outputs[0].oper = output_op;
 run_outputs[0].index = 0;
 
 TF_Tensor** run_output_tensors = (TF_Tensor**)malloc(1 * sizeof(TF_Tensor*)); //笔者在使用这种方法的时候会导致内存泄露,因此需要注意
 float* raw_output_data = (float*)malloc(1 * sizeof(float));
 raw_output_data[0] = 1.f;
 int64_t* raw_output_dims = (int64_t*)malloc(1 * sizeof(int64_t));
 raw_output_dims[0] = 1;
 
 TF_Tensor* output_tensor =
 TF_NewTensor(TF_FLOAT, raw_output_dims, 1, raw_output_data,
 1 * sizeof(float), &deallocator, NULL);
 run_output_tensors[0] = output_tensor;
 
 // run network
 // ================================================================================
 TF_SessionRun(sess,
 /* RunOptions */ NULL,
 /* Input tensors */ run_inputs, run_inputs_tensors, 1,
 /* Output tensors */ run_outputs, run_output_tensors, 1,
 /* Target operations */ NULL, 0,
 /* RunMetadata */ NULL,
 /* Output status */ status);
 if (TF_GetCode(status) != TF_OK) {
 fprintf(stderr, "ERROR: Unable to run output_op: %s\n", TF_Message(status));
 return 1;
 }
 
 // printf("output-tensor has %i dims\n", TF_NumDims(run_output_tensors[0]));
 
 void* output_data = TF_TensorData(run_output_tensors[0]);
 printf("output %f\n", ((float*)output_data)[0]);
 // you do not want see me creating all the other tensors; Enough lines for
 // this simple example!
 
 // free up stuff
 // ================================================================================
 // I probably missed something here
 TF_CloseSession(sess, status);
 TF_DeleteSession(sess, status);
 
 TF_DeleteStatus(status);
 TF_DeleteBuffer(graph_def);
 
 TF_DeleteGraph(graph);
 
 free((void*)input_encoded);
 free((void*)raw_input_data);
 free((void*)raw_input_dims);
 free((void*)run_inputs);
 return 0;
 }
 
 TF_Buffer* read_file(const char* file) {
 FILE* f = fopen(file, "rb");
 fseek(f, 0, SEEK_END);
 long fsize = ftell(f);
 fseek(f, 0, SEEK_SET);  // same as rewind(f);
 
 void* data = malloc(fsize);
 fread(data, fsize, 1, f);
 fclose(f);
 
 TF_Buffer* buf = TF_NewBuffer();
 buf->data = data;
 buf->length = fsize;
 buf->data_deallocator = free_buffer;
 return buf;
 }
 
 /*
 TF_CAPI_EXPORT extern void TF_SessionRun(
 TF_Session* session,
 // RunOptions
 const TF_Buffer* run_options,
 // Input tensors
 const TF_Output* inputs, TF_Tensor* const* input_values, int ninputs,
 // Output tensors
 const TF_Output* outputs, TF_Tensor** output_values, int noutputs,
 // Target operations
 const TF_Operation* const* target_opers, int ntargets,
 // RunMetadata
 TF_Buffer* run_metadata,
 // Output status
 TF_Status*);
 */
 
 |